
the area of information encryption. The teams of specialists in
cryptography were substantially reinforced with young
graduates from the leading higher educational institutions of
our country.

A special branch was set up at the Mechanics and
Mathematics Department of Moscow State University for
training future experts in mathematics and cryptography. A
higher educational institution was simultaneously organized
for training cryptographers and specialists in mathematical,
physicotechnical, communications, and related areas; its
successor is now the Institute of Cryptography, Communica-
tions, and Informatics. For several decades, the graduates of
these educational institutions, along with the graduates of
other higher educational establishments, formed a highly
qualified body of scientists and practising engineers who
drove the successful development of domestic cryptography
and the cryptography-based immunity of the state, military,
and economic communication lines in this country. By the
early 1990s, the cryptographic service of our country had
accumulated substantial scientific potential and scientific and
technical schools had taken shape, where scientists and
specialists carried out research at contemporary scientific
and technical levels. Based on the results of this research, a
system was established for upholding doctoral and candida-
te's dissertations. As a result, the cryptographic service has
come to embrace a substantial contingent of highly qualified
researchers with doctor's and candidate's degrees.

Under these circumstances, the State Academy of Crypto-
graphy of the Russian Federation was established with the
approval of the President of the RussianAcademy of Sciences
by decree of the President, Russian Federation in 1992. At
present, the Academy of Cryptography conducts about
100 research works per year, which are performed by up to
1000 scientists and experts from over 40 scientific organiza-
tions in our country, including the Russian Academy of
Sciences, M V Lomonosov Moscow State University, etc.
Jointly with the RAS, the Academy of Cryptography
publishes Trudy po Diskretnoi Matematike (Proceedings in
Discrete Mathematics). Since 1997, eight volumes have been
published, which contain unclassified papers of the members
of the Academy of Cryptography and young mathematician-
cryptographers.

Kotel'nikov's creative collaboration with the crypto-
graphic service of the country continued on and off through-
out all his life. An active phase of this cooperation dates to
1992, when the Academy of Cryptography of the Russian
Federation was set up.Kotel'nikov played a crucial role in the
establishment of the Academy of Cryptography and actively
provided support for it at all stages of its formation and
development. Together with five other members of the
Russian Academy of Sciences, he was among its founders
and would subsequently participate directly in the scientific
and scientific-organizational activity of the Academy of
Cryptography. The talks and discussions between Academy
members and Kotel'nikov about different cryptographic
problems, including discussions on various ways of construct-
ing `perfect encryption' devices, were interesting and fruitful
for the interlocutors.

To perpetuate Kotel'nikov's memory, the Presidium of
the Academy of Cryptography of the Russian Federation
instituted in 2006 two V AKotel'nikov scholarships for post-
graduates of the Institute of Cryptography, Communica-
tions, and Informatics of the Academy of the Federal
Security Service.

The Academy of Cryptography piously reveres the
memory of those who have participated in the formation
and development of the modern cryptographic service of the
country, who worked hard and made a major contribution to
the development of domestic cryptography. The name
Vladimir Aleksandrovich Kotel'nikov is one of the highest
on the list of these names.
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Quantum cryptography
and V A Kotel'nikov's one-time key
and sampling theorems

S N Molotkov

Quantum cryptography constitutes a new avenue in the
development of the means of confidential information
transmission. To be more precise, quantum cryptographic
systems are systems for secret key distribution between
spatially separated (remote) legitimate users. Affording
secret key distribution over such users is of crucial impor-
tance in cryptography. If there existed a way of distributing
(transferring) secret keys from one legitimate user to another
via a public (nonsecret) communication channel with an
assurance that the keys would remain unknown to the
eavesdropper in the course of transfer, it would be possible
to transfer messages ciphered with the aid of these keys, which
in principle cannot be deciphered (broken) by a third person.
Suchlike fundamentally nondecipherable systems are referred
to as absolutely unbreakable, or cipher systems in a one-time
pad mode. More recently, these ciphers have come to be
known as perfect.

First we briefly touch upon the history of the problem.
The first rigorous substantiation of the fact that one-time

key cipher systems are absolutely unbreakable was given in
Vladimir Aleksandrovich Kotel'nikov's work. This work,
which had been completed a few days before the Soviet
Union entered the Great Patriotic war, was part of a
classified report [1] and has never been published in the open
press.

At the same time, the problems of theoretical cipher
immunity were independently studied by C Shannon. The
findings of his investigations were presented in the classified
report ``A mathematical theory of cryptography'', which
dates to 1 September 1946. Following the war this report
was declassified 1 and published in 1949 as the paper
``Communication theory of secrecy systems'' [2], which
became a well-known classic work on theoretical cryptogra-
phy.

An idea quite close to the idea of the one-time pad cipher
mode was advanced in G S Vernam's work ``Cipher printing
telegraph systems for secret wire and radio telegraphic
communication'' [3] back in 1926. He stated, although
without any mathematical reasoning, that running key
ciphers would be perfectly secure: ``If, now, instead of using

1 Here, there is good reason to mention the opinion ofWDiffie, one of the

founders of public-key cryptography. In his view, Shannon's work might

conceivably have been declassified by mistake [see the preface to

B Schneier's monograph Applied Cryptography (John Wiley & Sons,

Inc., 1996)].
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English words or sentences, we employ a key composed of
letters selected absolutely at random, a cipher system is
produced which is absolutely unbreakable''.

Thanks to Kotel'nikov's and Shannon's research, there
emerged a clear and rigorous understanding as to what
criteria an absolutely unbreakable cipher should satisfy.

Informally, a cipher is absolutely unbreakable when:
(i) the key is secretÐ is known to only the legitimate users;
(ii) the key length in bits is no shorter than the message

length;
(iii) the key is random, and
(iv) the key is employed only once.
In this case, the message in cipher is statistically

independent of the initial message.
The fundamental problem in the realization of one-time

key cryptosystems consists in the transfer (distribution) of
secret keys to remote legitimate users.

The key has to be transferred to such users by way of some
physical signal via a public (i.e., accessible to eavesdropping)
communication channel. From the standpoint of classical
physics, in this case there is no prohibition against measuring
the transmitted signal without its perturbing. That is why it is
in principle impossible to guarantee the secrecy of the key in
its distribution.

The situation is radically different and more interesting
when the key transfer is effected by means of quantum states.
Quantum cryptography, based on the basic prohibitions
imposed by quantum mechanics, opens the door to key
transfer with the aid of quantum states, the secrecy being
ensured by the basic laws of nature. Quantum cryptography
therefore makes it possible to realize absolutely unbreakable
cipher systems with one-time keys, which can be traced to the
works of Vernam, Kotel'nikov, and Shannon. Properly
speaking, the idea of quantum cryptography is aimed
precisely at solving the central cryptographic problem Ð the
problem of secret key distribution.

The idea of invoking quantummechanics for information
protection was first stated by S Wiesner in 1973 (the idea of
`quantum' money) but published [4] only a decade later.
Interestingly, the ideas of applying quantum mechanics to
information protection were conceived earlier than classical
public-key cryptography [5, 6].

The advent of quantum cryptography is associated with
the publication of a remarkable paper by Bennett and
Brassard in 1984, who came up with the first cryptographic
protocol BB84 which later became classic [7].

Quantum cryptography, or secret key distribution,
permits, in principle, realizing absolutely unbreakable (not
decipherable by an eavesdropper even theoretically) one-time
key cipher systems. The secrecy of keys in quantum crypto-
graphy relies on the fundamental quantum-mechanical
prohibitions: (i) an unknown quantum state cannot be
cloned (the no-cloning theorem [8]); (ii) a pair of observables
to which there correspond noncommuting Hermitian opera-
tors cannot be simultaneously distinguished with confidence,
which stems from the Heisenberg uncertainty relation [9], or,
to be more formal, noncommuting operators cannot posses
common eigenvectors. The density matrices of the informa-
tion states corresponding to the classical 0 and 1 bits fulfill the
function of observables in quantum cryptography. For pure
states, the simultaneous unobservability (certain indistin-
guishability) of the density matrices is equivalent to the
nonorthogonality of information quantum states [9]. The
aforesaid signifies that there are no measurements which

allow distinguishing one of the pair of nonorthogonal states
with the probability 1 and in doing this retain the initial
(unperturbed) state of the system.

Therefore, any measurement that yields information
about the transmitted states is bound to disturb them, which
permits detecting any attempts at eavesdropping in the
communication channel. In other words, the eavesdropping
(accordingly, the perturbation of the transmitted states)
cannot help but change the statistics of measurement data at
the receiving end in comparison with the statistics of the
measurement data covering unperturbed states. A quantum
state distortion takes place in a nonideal quantum channel,
which is also responsible for a change in the statistics of
measurement data. In quantum cryptography it is in principle
impossible to distinguish whether the data statistics change in
comparison with that in the ideal case due to noise in the
channel or due to the actions of an eavesdropper, and
therefore any changes in statistics are to be attributed to an
eavesdropper's action.

If the laws of quantum mechanics allowed revealing
merely the very fact of perturbation of transmitted states,
this would be of little interest for the purposes of crypto-
graphy, more specifically for the transfer of keys. Quantum
mechanics permits not only detecting the state perturbation, but
also relating the change in measurement data statistics to the
amount of information which might be obtained by an
eavesdropper for the observed change in counting statistics in
comparison with the statistics in the ideal case.

Apart from a quantum communication channel (in real
conditions, this is either optical fiber or open space) employed
for transferring quantum states in quantum cryptography,
also required is a public, classical communication channel.
The latter is required by legitimate users to reveal the changes
in counting statistics and error correction in the primary key
transmitted via the quantum communication channel.

The only requirement imposed on the classical commu-
nication channel is that the classical information transmitted
openly and accessible to anyone, including an eavesdropper,
cannot be altered by the eavesdropper, thus being intact (the
so-called unjammable channel) [7]. This unjammable channel
is, of course, a mathematical idealization. In real conditions,
to retain the integrity of the publicly transmitted classical data
advantage should be taken of data authenticity and integrity
verification procedures. These procedures, in turn, require a
secret key. When use is made, for instance, of the Internet as
the unjammable channel, the Hellman ±Diffie key generation
scheme [5] may be employed for authenticity verification
purposes. However, when the unjammable channel makes
use of the same optical fiber line as for the quantum channel,
the Hellman ±Diffie key generation scheme for authenticity
verification obviously turns out to be unacceptable due to the
so-called `man in the middle' attack.

In this situation, a small start-up key is required once
during the first communication session. In the succeeding
sessions this key is discarded, and a part of the key
generated via the quantum channel during the previous
exchange session is employed to verify the authenticity and
integrity of data transmitted via the classical channel. The
remaining greater part of the key obtained via the quantum
channel is intended for transmitted information ciphering
itself. When use is made of GOST R 34.11-94 procedures
[10] to verify the authenticity and to retain integrity of the
data, the start-up key length equals 256 bits. In this case, a
new secret key (much longer than the initial one) may be
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transferred during several seconds of exchange via the
quantum channel.

Of course, the start-up key may be used for ciphering a
new key and transferring it to the second legitimate user.
However, in doing this the absolute secrecy of the new key is
guaranteed only when its length does not exceed the length of
the key employed to cipher the new key, i.e., there is no way of
obtaining a longer key than the initial one. In quantum
cryptography, the start-up key is not employed directly to
transfer a new key, which is generated via the quantum
communication channel. In this case, the number of open
information bits transferred via the unjammable channel per
one bit of the new secret key can be made smaller than unity,
and a key expansion is therefore possible.

The approach involving a small start-up key is preferable
to the approaches relying on asymmetric public-key crypto-
graphy algorithms, because it permits minimizing the number
of sessions of exchange via the public communication channel
in the course of key privacy amplification and `purification'.

The main task of the theory reduces to elucidating the
length of the secret key which can be obtained for observed
changes in the statistics of the measurement data at the
receiving end in comparison with the statistics covering
unperturbed states. As a rule, the quantity which charac-
terizes the departure of the measurement statistics from the
ideal ones is the observed error probability at the receiving
end, or more precisely, the probability that the transferred
0 bit was recorded as 1, and vice versa. This situation takes
place in the widely used BB84 protocol, although other
criteria of a statistics change are possible, which employ
several parameters. Prior to error probability elucidation,
via a public channel there occurs a comparison of the bases at
the receiving and transmitting sides (for the BB84 protocol
[7]) or disclosing the positions at the receiving side, where
measurements yielded an indefinite result (for the B92
protocol [9]). The error probability is evaluated by compar-
ing, via the public communication channel, a part of the
sequence obtained via the quantum information channel with
the corresponding part of the initial one; the disclosed part is
subsequently discarded.

The next step of any quantum cryptographic key-
distribution protocol consists in error correction in the
undisclosed part of the sequence for legitimate users by way
of information exchange via the public information channel.
Legitimate users are commonly given the names Alice and
Bob, while the eavesdropper is referred to as Eve. As a result
of error correction, Alice and Bob retain bit sequences of
shorter length that are already similar. In this context,
`similar' signifies that the sequences coincide with a prob-
ability arbitrarily close to unity: 1ÿ 2 n (for instance,
1ÿ 2ÿ200 � 1ÿ 10ÿ70; we recall that the number of atoms in
the Universe is estimated at 1077). The parameter n is selected
by legitimate users.

Upon `purifying' the primary key, the eavesdropper has a
string of bits or a register of quantummemory with the states,
or both. The last step in obtaining the final secret key consists
in privacy amplification [11] Ð in the compression of the
`purified' key with the aid of the so-called 2-universal hash
function [12], which is a random function by itself for the
already similar sequences with Alice and Bob. The randomly
selected hash function is openly conveyed by one of legitimate
users via the public communication channel and is considered
to be known to all, including the eavesdropper. For legitimate
users, the compressed bit sequence is the common secret key,

with the assurance that the eavesdropper has an arbitrarily
small amount of information about the key according to some
secrecy parameter prescribed by Alice and Bob.

The natural requirement imposed on the error correction
and key privacy amplification procedures is that the number
of bits conserved in the final key should be as large as possible.
Yet another requirement consists in the minimization of the
number of exchange sessions involving the public commu-
nication channel in terms of one bit in the final secret key.

In the error correction in the primary key, the task of the
legitimate users is not only to correct the errors, but also to
estimate the upper limit of the amount of information which
the eavesdropper can gain from exchanges via the public
communication channel. To correct errors, advantage can be
taken of different procedures, including the well-elaborated
classical error-correcting codes.

We now turn our attention to the discussion of experi-
mental realizations of quantum cryptographic systems.

Research in the area of quantum cryptography and
realization of different quantum cryptosystems is pursued in
many universities in all developed countries and nearly all
leading telecommunication companies. During the last five
years, quantum cryptography has walked its way from purely
theoretical investigations to their practical realization and the
fabrication of the first commercial prototypes.

The existing prototypes of quantum cryptosystems
employ primarily the following principles of coding classical
information into the states of quantum systems.

(1) Coding the information about the key into polariza-
tion degrees of freedom [13].

(2) Phase coding with the aid of a Mach ±Zehnder
interferometer, in which the information is coded into the
phase difference between the receiving and transmitting
interferometer arms [14, 15].

(3) Coding on the basis of frequency modulation of the
carrier frequency [16].

(4) Quantum cryptography on coherent states employing
homodyne detection at the receiving end [17].

The greatest progress has been achieved in cryptosystems
with phase coding and self-compensation [18] employing
Faraday reflectors. The first laboratory prototype of a
quantum cryptosystem was made in the IBM Research
Center in 1989, and the length of its quantum communica-
tion channel measured 1 m [19]. Laboratory versions of a
cryptosystem based on a time division Mach ±Zehnder
interferometer were implemented using a 30-km long optical
fiber communication line in the research laboratory of British
Telecom in 1995 [20] and optical fiber communication lines of
total length 48 km in the Los Alamos Laboratory [21]. These
schemes relied on the principle of phase coding. The NEC
research laboratory extended the range to 100 km in 2003 [21],
and to 150 km in 2004 [22]. These schemes exhibit a
sophisticated development of the idea of phase coding with
self-compensation by the use of Faraday reflectors. The
aforementioned cryptosystems, particularly the schemes
with phase coding and self-compensation, are rather compli-
cated to realize. The theoretical research of a group atGeneva
University resulted in the implementation of a quantum
cryptosystem with a 23-km long optical fiber cable laid on
the bottom of Lake Geneva between the cities of Nyon and
Geneva. The line, which has been lengthened to 67 km to date,
constitutes a complex optical-fiber interferometer with phase
coding and self-compensation employing Faraday reflectors
[18] (the first so-called plug&play quantum cryptographic
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system). Active research is being pursued at the IBM research
laboratory (Almaden) [23, 24]. The first local quantum
cryptographic network in Boston has been approbated,
which is intended for distributing secret keys between users
spaced at 10 km (the project is being carried out under the
auspices of the Defense Advanced Research Projects Agency)
[25].

The MagiQ innovative company recently announced the
first commercial version of a quantum fiber cryptosystem
operating within a 120-km range, which relies on the phase
coding principle. The scheme realizes the BB84 quantum
cryptographic protocol.

In the opinion of experts of QinetiQ and Toshiba
Research Europe (Great Britain), within three years a start
will be made on the wide use of quantum cryptosystems, first
and foremost by governmental institutions and banks.

There are known realizations of the prototypes of
quantum cryptosystems that transfer secret keys via open
space [26 ± 28]. Judging by the published data [28], the
record-long range amounts to 23.4 km, both in the day-
time and night-time. Suchlike quantum cryptosystems are
intended for the generation and transfer of secret keys
between ground-based objects and low-orbit satellites (up
to altitudes of 1000 km) or between ground-based objects via
satellites. In the view of a project leader of QinetiQ,
experiments are planned on the transfer of cryptographic
keys to low-orbit satellites and with their aid it will be
possible to convey secret keys to any point of the planet
within seven years or so.

The following parameters of quantum cryptographic
optical fiber communication lines are predicted for the near
future:

(1) The number of errors not exceeding several percent for
an effective rate of information transfer via an optical fiber
quantum channel.

(2) A length of about 100ÿ150 km for a quantum optical-
fiber communication channel.

(3) 8 ± 16 subchannels in the wavelength multiplexing.
Despite the impressive progress in the understanding of the

cryptographic unbreakability (secrecy) of quantum cryptosys-
tems, as well as in their implementation, these systems contain
rather sophisticated optical-fiber, electronic, and software
components, and operating them at the present time is more
like conducting a subtle scientific experiment and demonstrat-
ing experimental skill rather than a practical activity involving
conventional equipment in general use. Another significant
circumstance which now limits the wide acceptance of
quantum cryptosystems on the basis of phase coding is that
the quantum cryptosystems so far are hardly compatible with
standardized optical-fiber telecommunication technologies
because they contain specific components (interferometers)
requiring fine adjustments. Lastly, the fundamental point is
that every quantum cryptographic protocol for secret key
distribution in fact necessitates `dark' optical fiber lines
(vacant lines).

There are three basic protocols for secret key transfer,
which are briefly termed BB84 [7], B92 [9], and BB84�4� 2�
[29]. The BB84 protocol makes use of four quantum states:
two orthogonal states for 0 and 1 in one basis, and two
orthogonal states for 0 and 1 in the other. Between the bases,
the states are nonorthogonal in pairs, which is needed to
ensure secrecy. The B92 protocol makes use of a pair of any
nonorthogonal quantum states corresponding to 0 and 1. The
BB84�4� 2� protocol is a derivative of BB84 and differs from

the latter in that the states inside the bases are also made
nonorthogonal. Clearly, different exchange protocols neces-
sitate different physical devices to produce the quantum states
at the transmitting end and, accordingly, different devices to
make quantum-mechanical measurements at the receiving
end.

The cryptographic unbreakability (secrecy) of these
protocols has been investigated in sufficient detail [29 ± 36].
When account is taken of real parameters Ð the nonstrict
single-photon nature of the source, the nonideality of
avalanche photodetectors, and the optical-fiber communica-
tion line attenuation, the above protocols ensure the secrecy
of key distribution up to a certain critical length of the optical-
fiber communication line [29]. The B92 protocol is minimal in
terms of the number of states involved and measurements but
ensures secrecy up to distances of only� 15ÿ20 km [33]. The
most thoroughly studied BB84 protocol, which uses four
quantum states, is more complicated in realization and
maintains secrecy up to distances of � 50 km [29]. Finally,
the BB84�4� 2� protocol makes use of four states nonortho-
gonal in pairs. This protocol is still more complex in
realization and optical-fiber interferometer adjustment, but
`survives' up to distances of � 150 km from the viewpoint of
secrecy [29].

Experimental realization of quantum cryptosystems calls
for single-photon sources. We emphasize that from the
standpoint of theory it is not necessary that the quantum
states used for key transfer be single-photon states. In a
multiphoton case, however, quantum-mechanical measure-
ments taken at the receiving end to detect attempts at
eavesdropping and changing the quantum states should
formally be realized as projectors on the corresponding
vectors of multiphoton quantum states. Such measuring
devices so far do not exist, although there are no theoretical
prohibitions against the realization of these quantum-
mechanical measurements. That is, the use of precisely
single-photon quantum states is caused by the existing
detectors (actual detectors are gated avalanche photodetec-
tors with Peltier cooling).

It is pertinent to note that superconductor-based photo-
detectors have already been devised; these, unlike hetero-
structure-based avalanche photodetectors, distinguish states
with a different number of photons.

Single-photon (more precisely, quasi-single-photon)
quantum states are obtained by way of strong attenuation of
a coherent state Ð laser radiation, which contains multi-
photon components even after arbitrary attenuation.

The nonstrict single-photon nature of the source in
combination with the attenuation in the quantum communica-
tion channel have the effect that the distributed-key secrecy is
guaranteed only when the channel length does not exceed some
critical value.

The negative role of attenuation (for a nonstrictly single-
photon source) in the quantum communication channel
consists in the fact that, beginning with some degree of
attenuation, it is no longer possible to guarantee the
transferred-key secrecy (which is most important) rather
than that the attenuation evidently lowers the rate of key
transfer, because not all photons reach the receiving end. The
attenuation in optical-fiber communication lines depends on
the length of the communication channel. However, the
critical length up to which the system retains secrecy is still
not strictly known. Its estimates range from dozens of
kilometers to 150 km [29].
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Efforts are underway to employ radiation sources in
quantum cryptography, which are built, for instance, around
diamond nanoparticles that approach single-photon sources
by their parameters [37].

When the main quantum cryptographic protocols and the
proofs of their secrecy in a channel with attenuation are
analyzed (BB84 and B92 are the main protocols, while the
remaining ones are their derivatives of one kind or another), it
becomes evident that a priori information is required (and
employed explicitly or implicitly) about the error stream
(Quantum Bit Error Rate, QBER) arising from the attenua-
tion. For instance, if the attenuation in the communication
channel varies during the key transfer protocol, the error
stream also changes (even in the absence of an eavesdropper).
Moreover, if the protocol implies the QBER constancy, no
secrecy of the key transfer may be assured whatsoever. While
the attenuation in optical-fiber quantum cryptosystems may
be treated as being constant (for a single-mode optical fiber it
is equal to 0.17 ± 0.25 dB kmÿ1 at a wavelength of 1550 nm), in
the transfer via open space this is clearly not so, because the
state of the atmosphere is impossible to control. It is therefore
desirable to have key distribution protocols that are immune
to and guarantee key secrecy under variations of attenuation
in the communication channel during the protocol time and
whose secrecywould be independent of the a priori knowledge
of attenuation strength. This problem, in our view, is serious
enough and calls for a solution, because otherwise the
absolute secrecy of quantum cryptography (the secrecy
which is fully ensured by the fundamental quantum-mechan-
ical prohibitions rather than by the technically limited
capabilities of the eavesdropper) may be thrown into doubt.

All the aforementioned difficulties are related to the fact
that the protocol secrecy is actually based only on the
geometric properties of the state vectors of a quantum system
in the Hilbert spaceH. More precisely, on the impossibility of
cloning (the no-cloning theorem [8]) an unknown quantum
state and the principal certain indistinguishability of non-
orthogonal quantum states (the Bennett theorem [9]).
Roughly speaking, these protocols are formulated in the
Hilbert space H. The fact that all measurements and the
distribution of quantum states occur in space ± time is in no
way used explicitly. In the distribution of a quantum state,
attenuation takes place in space ± time rather than in the
Hilbert space. That is why to eliminate the problem of
attenuation-caused secrecy loss requires involving other
additional basic limitations that stem from the properties of
quantum states and gaining information about them in
space ± time. The limitations stemming from only the geo-
metric properties of quantum states in the Hilbert space have
supposedly been exhausted with relation to the construction
of quantum cryptographic protocols.

These additional basic and natural limitations are dictated
by the special relativity theory. Furthermore, photons
represent truly relativistic massless particles (the massless
quantized field states) which travel at a maximum permissi-
ble speed. That is why in the development and realization of
quantum cryptography in open space it would be unnatural
to take no advantage of the additional possibilities offered by
nature.

Below we briefly discuss quantum cryptosystems for key
transfer via open space, which take advantage of the
additional prohibitions stemming from special relativity, in
addition to the limitations on the measurability of quantum
states, stemming from quantum mechanics.

Since the fact of distribution of quantum states (the key) in
space ± time is explicitly taken into account in the quantum
cryptosystems discussed below, it is required to know before-
hand the length of the quantum communication channel between
the transmitting and receiving parts.

Relativistic quantum cryptosystems retain secrecy for
any attenuation in the communication channel. The magni-
tude of attenuation lowers only the key transfer rate but has
no effect on its secrecy. Moreover, the key secrecy is
guaranteed even for non-single-photon states. The scheme
remains secret for an arbitrary average number of photons in
the quantum state. According to calculations (for details, see
Ref. [38]), the highest efficiency is achieved when the average
number of photons is small, viz. m � 1ÿ3. For these average
occupation numbers, idle sendings are virtually absent (the
vacuum component fraction in the coherent state is low).
This signifies that the key generation rate is at least an order
of magnitude higher than in schemes entirely based on the
geometric properties of quantum states, which require
attenuating laser radiation down to m � 0:1ÿ0:3. An
additional increase in the rate arises from the fact that the
limitations from the side of the special relativity theory
permit us to employ even orthogonal states, which does not
require verifying the reconciliation of measurement bases, as
in the BB84 protocol. Furthermore, since all actions of
participants (both of the legitimate ones and the eaves-
dropper) are effected in space ± time and the states are
orthogonal, collective measurements of the eavesdropper
do not offer him any advantages in comparison with
individual measurements in every sending. Lastly, the
system guarantees key secrecy even for an error level close
to 50% in the received binary sequence (for details, see
Ref. [38]). It is pertinent to note that the secrecy, for
instance, for the BB84 protocol is ensured up to an error
level of only 11% [30, 32].

Recall that error-free information transfer, actually error
correction in the limit of asymptotically long sequences in a
classical binary symmetric channel, is theoretically possible
when the error probability does not exceed 50%. In relativistic
quantum cryptography, for an error level close to 50% it is
possible not only to correct errors, but also to guarantee the
secrecy of information (keys) transmitted by means of quantum
states via open space.

The only additional requirement imposed on relativistic
quantum cryptosystems in comparison with nonrelativistic
quantum cryptosystems based on nonorthogonal states is the
knowledge of the length of the quantum communication
channel, which, in our opinion, is a small penalty for those
advantages which may be offered by relativistic quantum
cryptography.

In quantum cryptosystems, the revelation of any
attempts at eavesdropping is guaranteed by the following
two basic, closely related quantum-mechanical prohibi-
tions.

(1) Impossibility of the process

jj0i 
 jAi 7! jj0i 
 jj0i 
 jA0i ;
hj0jj1i 6� 0 : �1�

jj1i 
 jAi 7! jj1i 
 jj1i 
 jA1i ;

This prohibition against cloning an unknown quantum state
is termed the no-cloning theorem.

(2) Impossibility of gaining information about one of the
nonorthogonal states without their perturbation, i.e., forbid-
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ding of the following process:

jj0i 
 jAi 7!U
ÿjj0i 
 jAi

� � jj0i 
 jA0i ;
jA0i 6� jA1i; �2�

jj1i 
 jAi 7!U
ÿjj1i 
 jAi

� � jj1i 
 jA1i ;

where jAi is the state of the observer's device, and U is some
unitary operator which describes the joint evolution of the
state under investigation and the state of the device. These
prohibitions are in essence one of the manifestations of the
basic Heisenberg uncertainty principle relating to the impos-
sibility of simultaneously measuring the observables to which
there correspond noncommuting operators.

For orthogonal states, there are no prohibitions on their
cloning or information extraction without their perturba-
tion. In the framework of nonrelativistic quantum
mechanics, to the observables r0 � jj0ihj0j and
r1 � jj1ihj1j there correspond commutative measuring
operators, which are orthogonal projectors
P0; 1 � jj0; 1ihj0; 1j (�P0;P1� � 0). Restrictions (1) and (2)
are in essence the geometric property of the state vectors
jj0; 1i of the quantum system in the Hilbert space of states.
Unless some additional basic restrictions on the measur-
ability of orthogonal quantum states are employed, they
cannot be used for the purposes of quantum cryptography
owing to certain distinguishability. The restrictions on the
measurability of quantum states imposed by special relativ-
ity represent such additional basic restrictions.

For orthogonal states, there is no prohibition against
certain distinguishing without their perturbation [9], or to be
more precise, the theorem [9] states nothing about it. The
statement that an orthogonal state `passes' through an
auxiliary system jAi, interacts with it during the passage,
and changes its state, which is frequently made in the
interpretation of this theorem, does not correspond to the
contents of the theorem. The theorem contains nothing of the
kind, in the sense that it is purely geometric in nature and
states that the state vector of the auxiliary system jAimay be
unitarily turned, depending on the input vector jj0; 1i, and
transferred to a new state jA0i or jA1i with no change of the
input vector. In this case, it is implicitly assumed that the
input vector jj0;1i is accessible as an integral object Ð that is,
to perform the unitary transformation U requires having
access to the entire space Hj0; 1

of states, in which the state
carrier is nonzero, otherwise the transformation will not be
unitary. The fact that in the proof there appears only the state
vector as an integral object jj0; 1i without inner coordinate
`filling' just means that the state vector participates `as a
whole' in the transformation.

For any real physical system, the Hilbert space Hj0; 1
is

inevitably attached to theMinkowski space ± time, in which a
state possesses amplitude (the smoothing wave function).
Therefore, access to the Hilbert space of states implies access
to that domain of space ± time, in which the state amplitude
(the wave function) is nonzero. If only a part of such a domain
is accessible, then even orthogonal states are impossible to
reliably clone or distinguish. This is more or less obvious,
since no process, including cloning or distinguishing, may
have a higher outcome probability than the fraction of state
normalization, which is gathered within the accessible spatio-
temporal domain and thereby automatically in the accessible
part of the Hilbert space. Roughly speaking, to clone with
certainty and distinguish orthogonal states, they are required
entirely and at once.

So, when the amplitude of a state is nonzero in some finite
domain of space ± time, the words that the state is entirely
accessible signify access to this domain. In nonrelativistic
quantum mechanics, which imposes no restrictions on the
limiting speed, access to any finite domain may be instantly
obtained. In quantum field theory, which imposes restrictions
on a limiting speed, access to the state as a whole may be
obtained only when the lengthy state is preliminarily unitarily
transformed to a state with an amplitude which is nonzero in
only an arbitrarily small spatial domain. After that, advan-
tage can be taken of the theorem [9]. According to the
relativistic causality principle [39], this unitary transforma-
tion of the state defined in a finite spatio-temporal domain to
a state localized in an arbitrarily small spatial domain may be
effected in a finite time only. The minimum requisite time is
determined from the condition that a part of the light cone
relevant to the `past' covers the initial spatial domain in which
the state amplitude was nonzero (Fig. 1a). The vertex of a
light cone resides in an arbitrarily strongly localized domain
(at a point) to which the initial state amplitude is unitarily
transformed. Each of the pairs of orthogonal states unitarily
transformed to (`collected in') a localized domain may
thereafter be cloned with certainty or distinguished. Since
we are dealing with massless states of a quantized field
(photons), which propagate at the maximum allowable
speed, this unitary transformation and the subsequent
cloning will result in a shift (delay) of the states in space ±
time relative to those in the case of their free evolution
(propagation). This circumstance makes it possible to detect
any attempts at eavesdropping. It is pertinent to note that the
restrictions imposed on measurements in the relativistic
domain were first investigated by L D Landau and R Peierls
[40] and subsequently by Niels Bohr and L Rosenfeld [41]. 2

L=2

L=2

L L

L

G

jji

x

x � ct
U�L�jjit Cloning of jji a

L

Ljji

x

x � ct U�L�jjit

b

Figure 1.

2 The problem of state localization in the relativistic domain is of

significance (in this connection see Refs [42 ± 47]).
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In other words, for orthogonal states of the massless
quantized field, the no-cloning theorem looks like this.
Orthogonal states may be cloned with a probability arbitra-
rily close to unity. The cloning results in production of states
with amplitudes of the same form but being shifted
(translated in space ± time). That is, a weaker process than in
the nonrelativistic case is allowed in expression (1). Therefore,
we have

jj0i 7!
ÿ
ULjj0i

�
 ÿULjj0i
�
; �3�

jj1i 7!
ÿ
ULjj1i

�
 ÿULjj1i
�
:

Here, UL is the translation operator along the branch of the
light cone in space ± time,L � D�xÿ t� is the dimension of the
domain in which the state amplitude is nonzero [for brevity
we assume that both states are nonzero in the same spatio-
temporal domain but differ in amplitude form j0; 1�xÿ t�].

Similarly modified is the theorem of Ref. [9] about
distinguishing orthogonal states Ð only a weaker process in
comparison with that in the nonrelativistic case (2) is allowed:

jj0i 
 jAi 7!
ÿ
ULjj0i

�
 jA0i ; jA0i 6� jA1i : �4�
jj1i 
 jAi 7!

ÿ
ULjj1i

�
 jA1i ;

The aforesaid is conveniently exemplified by the diagrams
given in Fig. 1.

Since the amplitude of massless quantized field states
propagating in one direction of the x-axis depends only on
the difference xÿ t, it is possible to fix the time and treat the
coordinate as a variable, or vice versa. We consider both
cases. These two cases exhaust all the situations. Assume that
one of the orthogonal states with an amplitude j�xÿ t� is
given, and they propagate at the speed of light (c � 1; the
subscript standing for the state 0 or 1 is for the moment
omitted for brevity). Let the state be concentrated in the
domain L in the sense that

�
L

��j�xÿ t0�
��2 dx � 1, where

j0; 1�xÿ t0� is the amplitude at the time section t0.
To obtain at once all values of the state amplitude for all x

at a point in time t0 in the domain where it is nonzero requires
effecting a unitary transformation of the whole state at once.
Let the unitary transformation of the state amplitude be
Uj0; 1�xÿ t0� � ~j0; 1�x 0 ÿ t� �t > t0�, then the new state
amplitude ~j�x 0 ÿ t� may be nonzero in a smaller spatial
domain. The minimal domain dimension in x 0 by the point
in time t is dictated, in essence, by the relativistic causality
principle which was formulated in its final form by
N N Bogolyubov [39]. The matrix elements of the unitary
operator are nonzero only when the points �x; t0� and �x 0; t�
lie within the `past' part of the light cone emanating from the
point G and covering the domain in which the state amplitude
is nonzero at the point in time t0. By a point in time no earlier
than L, the amplitude of the initial state may be unitarily
transformed to a state with an amplitude arbitrarily strongly
localized about G. It is basically significant that this will be
another state, a state different from the initial one j�xÿ t0�.
Accessible by the point in time G are the values of state
amplitude for all x at once (instantaneously). It is now
possible to instantaneously obtain the measurement out-
come and have complete (with the probability 1) information
about the state. If the pair of initial states is orthogonal, by
means of a unitary transformation it is possible to obtain also
a pair of orthogonal states by the point in time G and,

therefore, reliably distinguish one from the other (it is now
possible to take advantage of the theorem ofRef. [9] about the
certain distinguishability of orthogonal states). We empha-
size once again that these orthogonal states are different from
the initial ones. The `recovery' or cloning of the state may also
be realized through the inverse unitary transformation
`directed' forward in time. The state with an amplitude of
the same form as the initial one may be obtained by a point in
time no earlier than the point defined by relativistic causality.
The amplitude of the state with the same form as the initial
one is located in the forward part of the light cone emanating
from the point G. The resultant state is also different from the
initial one in the sense that it is retarded in time relative to the
initial state, which would have travelled forward along x by
the point in time L by precisely the value of L had there been
no attempts to clone it or obtain information about it (see
Fig. 1a). So far we have been dealingwith gaining information
with the probability 1 about states in the channel. The same
reasoning applies to gaining information with a probability
lower than unity. The delay will be shorter than L in this case
(see Fig. 1).

Similar reasoning also applies to the nonrelativistic case.
If the restrictions of the special theory of relativity are
neglected, in the previous consideration one should discard
that part which appeals to the light cone. In this case, the
unitary transformations may formally be effected instanta-
neously, and even the explicit presence of a coordinate can be
eliminated from consideration, retaining implicitly only the
fact that the states are entirely accessible under a unitary
transformation (the entire spatial region is instantaneously
accessible).

Similar reasoning may be employed when a state is
unitarily transformed to the state of an auxiliary localized
system. An example of such a unitary transformation is
provided by the `stopping' of light [48]. This unitary
transformation transfers the photon field state to a vacuum
state due to its masslessness and the impossibility of
possessing the zero propagation velocity, while the state of
an atomic system is transformed to some new state. Being
unitary, the transformation also requires access to all values
of the photon packet amplitude at the point of atomic system
localization. This access is achieved in the natural way during
propagation of the wave packet at the speed of light and its
arrival at the localized atomic system (`entry' of the whole
packet into the atomic system). Where obtaining a result with
the probability 1 is involved, this process also requires a time
L (the single-photon packet should completely `enter' the
atomic system). As this takes place, the photon field finds
itself in a different Ð vacuum Ð state, while the auxiliary
system finds itself in a new state, depending on the input
photon state. By the point in time Lwith the probability 1 it is
possible to find out what state it is and prepare the same one
with a delay L, which is inevitable in this case, unlike the case
of free propagation of the initial wave packet (see Fig. 1b).

Therefore, any acquisition of information about one of the
orthogonal states inevitably leads to their modification Ð
translation in space ± time (delay).

For the subsequent discussion it is significant that no
evolution of a massless quantized field interacting with the
environment (other quantum and classical degrees of freedom
in the communication channel) can result in state `squeezing'
in the sense that the state normalization would be accumu-
lated in a spatial domain going beyond the light cone and
being smaller than that in the free propagation (see Fig. 2). As
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a rule, this interaction will have the effect that the state will be
mixed, but the carrier of the density matrix in space ± time
cannot be `squeezed' and drawn out of the light cone (see
Fig. 2). Otherwise, that would allow conveying of informa-
tion by means of quantum states at a supraluminal speed.
Indeed, let there be one of a pair of orthogonal quantum
states (see Fig. 2). Participant A may extract classical
information from the quantum state no earlier than at the
point in time defined by the constraint that a part of the light
cone relevant to the `past' covers the state amplitude. After
that he can transmit the now-classical information to
participant B. This transmission cannot be effected faster
than the speed of light [the observers are connected by a
branch of the light cone (see Fig. 2)]. Were the quantum state
in the channel able to `squeeze' in the course of its evolution in
such a way that, on covering the state by a part of the light
cone relevant to the `past', the vertex of a cone found itself in
the domain spatially like to the light cone with a vertex at
point A, with one of the cone branches passing through point
B, then the observer at point B would be able to extract
classical information from the quantum state earlier than
participant A could transmit it with the speed of light, because
the vertex of a light cone covering the `squeezed' quantum
state went out into a spacelike domain.

From the standpoint of cryptography, the aforesaid signifies
that the noise in the channel does not permit the eavesdropper to
either clone or gain information about the state earlier than it is
dictated by the restrictions imposed by relativistic causality and
quantum mechanics (actually, the quantum field theory).

Invoking new fundamental physical principles in quan-
tum cryptography enables formulation of a new approach to
assuring key transfer secrecy, which eliminates the difficulties
encountered in nonrelativistic quantum cryptography (for
details, see Ref. [38]). Suchlike quantum cryptosystems would
naturally be termed relativistic ones.

We briefly consider here the theoretical limit of the secret
key generation rate attainable in quantum cryptography3 via
a quantum communication channel with a finite transmission
bandwidthW.

In the classical case, when a signal is described by a time
function x�t�, the number of information bits transferable via
a channel with a finite frequency bandwidth is, according to
the famousKotel'nikov sampling theorem proven in 1933 [49]
(see the Supplement to N V Kotel'nikova's report in this
issue), determined by the number of independent degrees of
freedom of the signal, in whose value it is possible to encode
the information transmitted. In our digital age, the sampling
theory `operates' in any facility that processes or transmits
information in a digital form.

A classical signal with a finite frequency band is described
by a time function x�t�. In a finite time interval �ÿT;T �, the
signal x�t� is, as first shown by Kotel'nikov [49], defined by
2WT degrees of freedom in the sense that in the expansion in
terms of the orthogonal system of functions:

x�t� �
X
n

xnyn�t� ; �5�

it would suffice to restrict the series to 2WT terms, for which� T

ÿT
yn�t� ym�t� dt � dnmln�WT �; ln�WT � � 1 : �6�

For basis functions yn�t�, Kotel'nikov employed the so-called
reference functions [49]

yn�t� � sinW�tÿ np=W�
W�tÿ np=W� : �7�

The basis of reference functions possesses a remarkable
property: the expansion coefficients xn in terms of this basis
are equal to the values of the signal x�t� itself at the reference
points in time. This has the following implication: to describe
a continuous signal at any point in time it would suffice to
know its values at only 2WT points in time.

Below we will conveniently employ other basis functions.
The number of these functions localized primarily in the
window �ÿT;T � remains the same in this case. Moreover,
these functions also emerge in the quantum case, where they
play the part of single-particle amplitudes (wave functions)
for photons which are most strongly localized in the time
window �ÿT;T �.

The orthogonality of basis functions with the carrier in a
finite frequency bandW leads to the condition� T

ÿT
yn�t� ym�t� dt

� 1

p

�
k4 jWj

�
k 04 jWj

yn�k� sin �kÿ k 0�T
kÿ k 0

ym�k 0� dk dk 0;

yn�k� � 1

2p

�1
ÿ1

yn�t� exp �ÿikt� dt :
�8�

The basis functions are orthogonal if they satisfy the
following integral equation

ln�WT � yn�k� � 1

p

�
k4 jWj

sin �kÿ k 0�T
kÿ k 0

yn�k 0� dk 0 : �9�

The eigenvalues depend only on the productWT and form an
infinite series

1 > l1�WT � > l2�WT � > . . . > 0 :

3 As of now, the key distribution rate in quantum cryptography is

determined not by fundamental limitations but by the technology level,

or more specifically, by the time it takes an avalanche photodiode to revert

to the initial state upon recording a photon, and by effects.

L

t

x

x � ct

< L

A

B

Figure 2.
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The degree of localization of the nth function squared in the
time window �ÿT;T � is determined by the eigenvalue� T

ÿT
y 2
n �t� dt � ln�WT � : �10�

The integral equation (9) defines the so-called prolate
spheroidal functions [50]. The eigenvalues possess the
remarkable property that for large WT �WT4 1� they
break up into two groups: one with numbers n < 2WT, for
which ln�WT � � 1, and the other with numbers n > 2WT,
for which ln�WT � � 0. The passage from one behavior to the
other occupies a domain which measures � ln �4pWT � in
number, i.e., for any e > 0, one has

lim
WT!1

l2WT�1ÿe��WT � � 1 ; lim
WT!1

l2WT�1�e��WT � � 0 :

�11�
This signifies that for large WT there exist no more than
2WT�1ÿ e� orthogonal (distinguishable) functions whose
contribution to the temporal window �ÿT;T � tends to
unity. When use is made of more than 2WT�1� e� degrees
of freedom, among them there will be states which make a
vanishingly small contribution to the temporal window
�ÿT;T �. For large WT, the signal x�t� in a finite frequency
band is described on a finite time interval by no more than
2WT independent (orthogonal and distinguishable) degrees
of freedom and may by defined by 2WT independent
expansion coefficients xn.

When a classical source with a finite frequency band W
generates signals localized in the time window �ÿT;T � in
such a way that the expansion coefficients are prescribed in
accordance with a given probability distribution p�xn� on the
set of these coefficients xn (the values of signal amplitudes),
the source entropy is defined by the quantity

I
ÿ
WT; p�xn�

� � 2WTH
ÿ
p�xn�

�
; �12�

H
ÿ
p�xn�

� � ÿX
n

p�xn� log p�xn� :

Furthermore, when these signals are transmitted via a perfect
(noise-free) physical communication channel, for instance,
having the same transmission frequency band W, the source
entropy (12) coincides in essence with the mutual information
between the input and output of this communication channel.
Then, the transmission capacity per unit time (source� physi-
cal communication channel� receiver) is defined as

C � lim
T!1

1

2T
max
f p�xn�g

I
ÿ
WT; p�xn�

� �W max
f p�xn�g

H
ÿ
p�xn�

�
:

�13�

We will need the following qualitative considerations to
compare the classical and quantum cases. In the framework
of classical physics there are no formal prohibitions against
variations in the expansion coefficients xn [the amplitudes of
orthogonal basis functions yn�t�] with an arbitrarily small
discreteness (continuously). Since the classical signal intensity
x 2
n , for instance, for an electromagnetic field, in every separate

mode yn�t� is, correct to a factor � �hW, the number of
photons in this mode, changes in signal level may take place
with a finite discreteness. To encode information into xn
values requires at least two values (x 2

n / Nmax, Nmax is the
highest number of possible x 2

n values). The total number of

different values for all modes equals � �����������Nmax

p �2WT. If every
value is selected with equal probability, the source entropy
(12) is given by

I
ÿ
WT; p�xn�

� � 2WT log
ÿ �����������

Nmax

p �
: �14�

The transmission capacity (8) per unit time for the lowest
signal level �Nmax � 2� is defined as

C �W : �15�

Formula (15), which is in essence an alternative representation
of Kotel'nikov's sampling theorem, defines the amount of
information in bits per one degree of freedom that can be
transmitted per unit time.

Strictly speaking, the formulas are inapplicable when the
mode occupation numbers are small.

In the subsequent discussion our concern will be with the
transmission capacity in the single-photon regime (the mode
occupation numbers are equal to unity). It is precisely this
quantity that will define the key generation rate in quantum
cryptography via a channel with a finite frequency bandW.

The above reasoning was needed to qualitatively compare
the classical and quantum cases. Our task will actually reduce
to calculating for a source with a finite frequency bandW the
number of possible orthogonal multiphoton states localized
in the time window �ÿT;T �. First we consider single-photon
states at the source output, which then travel in one direction
�k > 0� and have a carrier in a finite frequency band W
�k 2 �0;W��. The polarization degrees of freedom will be
ignored in the encoding into different forms of state
amplitudes, again for the sake of a closer analogy with the
classical case. For simplicity of calculations we put c � �h � 1.
Then we have

jj ei �
�W

0

dk

k
j
ÿ
k; k0 � jkj

�
a��k�j0i �

�1
ÿ1

dt j�t�jti ;
�16�

where j�k; k� �k > 0� and j�t� are the respective amplitudes
of a single-photon packet in the momentum and spatio-
temporal representations:

j�t� � 1

2p

�W

0

dk���
k
p exp �ÿikt�j�k; k� ;

�17�
jti �

�W

0

dk���
k
p exp �ikt� jki ; jki � a��k�j0i :

For a massless field, t � xÿ t depends only on the difference
between the coordinate and time; and so if a measurement
result was obtained in the neighborhood of a point x at an
instant of time t, the same result may be obtained at a point x 0

at the instant of time t 0 � t� �x 0 ÿ x�. Below, whenmention-
ing a time window, we will bear in mind that �ÿT;T � signifies
�ÿ�xÿ t�; �xÿ t��.

We have to select the amplitude (wave function) of a
single-photon packet with a carrier in a finite frequency band
W in such a way as to maximize its normalization in the
spatio-temporal domain, namely, in the �ÿT;T � window.
Formally, the degree of localization is described by the
measurement in this window. Any measurement on the
single-photon packet made in the temporal window is
described by expansion of unity in the single-particle sub-
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space, which is of the form

I �1� �
�W

0

dk

k
jkihkj � I �1��T � � I �1��T �

�
� T

ÿT

dt
2p
jtihtj �

�
ÿ�1;1�=�ÿT;T �

dt
2p
jtihtj : �18�

In view of expressions (12) and (13), the operator correspond-
ing to the temporal window �ÿT;T � is represented as

I �1��T � �
X1
n� 1

ln�WT �jynihynj ; jyni �
�W

0

dk

k
yn�k�jki :
�19�

The functions yn�k� themselves are the eigenfunctions of an
integral equation which differs from Eqn (9) only in that the
integration is performed over the segment �0;W �. The number
of functions localized in the temporal window �ÿT;T � will
equal WT. The vectors jyni are in essence the eigenvectors of
the operator I �1��T �Ðthe operator is diagonal in the basis of
these vectors. Any measurement on the initial state, when the
outcomes in only the temporal window are accessible, is
equivalent to measurements on the effective density matrix:

r�T � �
X
n; n 0

ln�WT � ln 0 �WT �jynihynjjihjjyn 0 ihyn 0 j

� Tr
�
I �1��T �jjihjj	j?ih?j : �20�

Here, we introduced the formal state j?i which is orthogonal
to all states and describes the outcomes beyond the temporal
window. These outcomes correspond to a situation wherein
the equipment did not actuate inside the window whatsoever.
Taking into account these outcomes, towhich an inconclusive
result should be assigned, the effective density matrix
possesses a unit spur. For large WT, it is possible to select
one ofWT orthogonal (distinguishable) single-photon states,
which is localized in the �ÿT;T � window with a probability
arbitrarily close to unity �ln�WT � � 1� andwhich possesses in
this window the effective density matrix

rn�T � � ln�WT �jynihynj �
ÿ
1ÿ ln�WT ��j?ih?j ; �21�

14 n4WT :

Let the source generate in the working temporal window the
�N �WT �-photon states of the form

jyn1 ; . . . ; ynNi

�
�W

0

. . .

�W

0

dk1
k1

. . .
dkN
kN

yn1�k1� . . . ynN�kN�jk1; . . . ; kNi ;

jk1; . . . ; kNi � a��k1� . . . a��kN�j0i ; �22�

where the generalized basis vectors are completely symmetric
with respect to particle permutations:

jk1; . . . ; kNi �
�����������������������
k1k2 . . . kN

N!

r X
f j g

d�k1 ÿ qj1� . . . d�kN ÿ q jN� ;
�23�

where the symbol f j g implies that summation is performed
over all permutations. Let us now construct the �N �WT �-
photon density matrices. In this case, the occupation number
of each single-particle mode is equal to unity. The set of

vectors in expression (17) with different indices is made up of
the eigenvectors of the operator I �N��T � in the �N �WT �-
photon subspace, similarly to the single-photon case. We
have

I �N� �
�W

0

. . .

�W

0

dk1
k1

. . .
dkN
kN
jk1; . . . ; kNihk1; . . . ; kNj

� I �N��T � � I �N��T �; �24�

I �N��T � �
� T

ÿT
. . .

� T

ÿT

dt1
2p

. . .
dtN
2p
jt1; . . . ; tNiht1; . . . ; tNj

�
X1

n1;...;nN � 1

ln1�WT � . . . lnN�WT �jyn1 ; . . . ; ynNihyn1 ; . . . ; ynN j :
�25�

Let us calculate the number of orthogonal �N �WT �-photon
states.WereN �WT photons distinguishable, the number of
orthogonal �N �WT �-photon vectors in the time window
�ÿT;T �, localized in it with a nearly unit probability, would
be equal to NN (neglecting the polarization degrees of
freedom). By the boson (photon) identity principle, the
number of such vectors, which is conveniently denoted as
2M�WT �, is equal to the number of distributions of N �WT
identical particles over N �WT states. Therefore, we arrive
at [51]

2M�WT � � �N�Nÿ 1�!
�Nÿ 1�!N!

; N �WT ; �26�

and for large N, in view of the Stirling formula �N! �
�N=e�N ���������

2pN
p �, we obtain

log 2M�WT � � 2N log 2 � 2WT : �27�

Let the source generate with equal probability one of the
2M�WT � orthogonal �N �WT �-photon states in every work-
ing time window. If the source operates for a sufficiently long
time, the statistical ensemble, into which classical information
may be encoded, is described by the density matrix

r
ÿ
M�WT �� � 1

2M�WT �
X

n1 ;...; nN

jyn1 ; . . . ; ynNihyn1 ; . . . ; ynN j :
�28�

The von Neumann ensemble entropy is highest for an
equiprobable sampling of vectors. The information in the
finite time window �ÿT;T � is extracted from the effective
density matrix

r�T � � 1

2M�WT �

�
X

n1;...;nN

ln1�WT � . . . lnN�WT �jyn1 ; . . . ; ynNihyn1 ; . . . ; ynN j

� 1

2M�WT �
X

n1 ;...;nN

ÿ
1ÿ ln1�WT � . . . lnN�WT ��j?ih?j : �29�

For large WT, it is impossible to construct a statistical
ensemble comprising more than 2M�WT � orthogonal
�N �WT �-photon states. The classical information which
may be encoded into the ensemble r

ÿ
M�WT �� and extracted

from r�T � (29) is given by the quantity wÿr�T ��which follows
from the fundamental inequality first derived by A SKholevo
(for details, see Ref. [52]). Since the states jyn1 ; . . . ; ynNi and j?i
are pure, w

ÿ
r�T �� coincides with the von Neumann entropy
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for r�T �, we find that

w
ÿ
r�T �� � ÿTr�r�T � log r�T �	

� ÿ
X

n1;...;nN

ln1�WT � . . . lnN�WT �
2M�WT �

� log

�
ln1�WT � . . . lnN�WT �

2M�WT �

�
ÿ
X

n1;...;nN

�
1ÿ ln1�WT � . . . lnN�WT �

2M�WT �

�
� log

�
1ÿ ln1�WT � . . . lnN�WT �

2M�WT �

�
: �30�

The transmission capacity per unit time is defined by the limit
similar to formula (15) applied in the classical case. Taking
into account that the contribution of the second sum in
expression (30) tends to zero, we obtain

C � lim
T!1

CT ; CT �
log
ÿ
2M�WT ��
2T

�M�WT �
2T

�W : �31�

During the time window, the source generates �N �WT �-
photon states in such a way that the number of photons at the
source output per unit time equals �W, and the energy per
photon � �hW. Accordingly, the number of photons in the
time window �ÿT;T � is equal to WT (precisely the number
and not the average number of photons, because the states
jyn1 ; . . . ; ynNi in expression (22) are the eigenvectors of the
operator of the number of photons that correspond to the
particle eigenvalue N �WT ). 4 The power at the source
output is constant and proportional to ��hW �W. The source
minimality in the quantum case signifies that the number of
orthogonal single-particle amplitudes yn�t�, which make up
the particle-permutation symmetric �N �WT �-photon
amplitude, amount to WT, and the number of photons are
WT, i.e., the occupation number in terms of an individual
single-particle amplitude is equal to 1.

In the classical case, information is encoded into the
values of the amplitudes (roughly, into the number of
photons) in orthogonal modes, and in the quantum case into
different orthogonal multiphoton states [53]. The latter are,
by virtue of photon identity, fundamentally entangled inside
every temporal window 2T. This quantum source coding may
be regarded as the quantum analog ofKotel'nikov's sampling
theorem, when the single-particle mode occupation numbers
are brought to the single-photon level.

The surprising thing is that the transmission capacity per
unit time per one degree of freedom in the classical case (15),
which follows from Kotel'nikov's sampling theorem, `lit-
erally' coincides with the similar transmission capacity in the
quantum case (31). However, the ways of encoding turn out
to be different in the classical and quantum cases.

In summary, it is pertinent to note that the emergence of
new avenues in the realm of confidential information
transmission is a natural, logical development of the ideas
conceived by the founders of this realm.
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V A Kotel'nikov and his role
in the development of space radio
electronics in our country

B E Chertok

Vladimir Aleksandrovich Kotel'nikov's contribution to
astronautics, to space technology in general, and to space
radio engineering in particular is so huge that one can
elaborate on this subject for a long time and in great detail.
Here, I briefly list the main investigations in this area,
performed under his supervision and more recently by the
school he created. Furthermore, I will enlarge on some of his

personal traits as a great scientist, who I met during my work
of very many years in this field.

The matter is that Kotel'nikov quite often reproached me
for drawing him into work in the area of astronautics. He
would do this very politely and subtly, so that I could not
understand whether he was really displeased with this or was
paying me a compliment in this way.

Everything commenced when Stalin approved on 13 May
1946 the historic resolution on the creation of the rocket
branch of industry, engineering, and science in the Soviet
Union.

In line with this resolution, despite the hard postwar time
the country was enduring, base institutions were established
and were growing quickly. In particular, they established a
leading research institute for rocket technology, the Scientific
Research Institute of theMinistry of Armaments in Podlipki,
which went down in history as NII-88, the now universally
known Central Scientific Research Institute of Machine
Building (TsNIIMash in Russ. abbr.), and the S P Korolev
Rocket and Space Corporation (RKK) `Energiya'. I was
Deputy Chief Engineer responsible for control systems.

One fine day, early in April 1947, the President of the
USSR Academy of Sciences Sergei Ivanovich Vavilov came
to the Institute to familiarize himself with its work. He was
that kind of scientist who realized that a breakthrough in this
new area called for combining the efforts of industry and
academic science with the potentialities of personnel of higher
education establishments.

Vavilov arrived at NII-88 with Rector of the Moscow
Power Engineering Institute (MEI in Russ. abbr.) Valeriya
Alekseevna Golubtsova rather than with a retinue of
academic scientists.

The meeting of Vavilov and Golubtsova with the
governing body of NII-88, in which I participated, marked
the beginning of the process of drawing academic scientists
and the scientists from institutes of higher education in a new
area of human activity Ð rocket and space exploration.

One of the outcomes of the utmost significance of this
meeting was drawing Vladimir Aleksandrovich Kotel'nikov
into creative activity in the area of rocket technology.

On familiarizing himself with the problems which then
called for the active participation of scientists of different
expertise, Vavilov came up with the idea of establishing

Kotel'nikov and Chertok at a session of the A S Popov Russian Scientific-

Technical Society of Radio Engineering, Electronics, and Communica-

tions (Moscow, House of Scientists, May 2003).
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