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Introduction to the Translation 
 
In 1933 the young Russian communications engineer Vladimir Aleksandrovich Kotelnikov 
published a paper in which he formulated the sampling theorem for lowpass and bandpass signals, 
and also considered the bandwidth requirements of discrete signal transmission for telegraphy and 
images. Although Kotelnikov’s name later became known in the West as a result of his subsequent 
work, particularly that on optimal detection, his pioneering 1933 results received little attention at 
the time outside Russian-speaking areas.  
 
Disputes about priority in science and technology are rarely productive. Different societies quite 
naturally associate seminal work with pioneers from their own history, particularly when such work 
is carried out independently within a few years in various geographical locations. The sampling 
theorem for telecommunications applications is thus associated with Claude Shannon (and, 
somewhat erroneously, with Harry Nyquist1) in the West, and with Vladimir Kotelnikov in Russia. 
However, Kotelnikov’s work is much less well known globally than that of the American 
engineers2.  
 
Vladimir Aleksandrovich Kotelnikov was born in 1908 in Kazan. He studied radio engineering as 
an undergraduate at the Moscow Energy Institute (MEI), and remained there to do postgraduate 
work. Following wartime research and development work in Ufa (one of the temporary locations of 
scientific institutions evacuated from endangered cities) he returned to MEI in 1944, where he 
became professor and Dean of the Radioengineering Faculty. He gained his Doctorate of Sciences3 
in 1947 on the topic of optimal detection and became a full Academician in 1953 – unusually, for 
the time, without the intervening stage of ‘corresponding member’. His book The Theory of 
Optimum Noise Immunity, a translation of the 1956 Russian monograph (essentially the author’s 
1947 dissertation), appeared in the US in 1959. Kotelnikov’s distinguished later career included a 
leading rôle in the Soviet space programme, directing work on planetary observation and mapping, 
for which he was awarded the prestigious Lenin Prize in 1964. He was Vice-President of the 
Russian Academy of Sciences from 1975 to 1988. Other awards include the German Eduard Rhein 
Prize in 1999, and the IEEE Alexander Graham Bell Medal in 2000. In 2003 Kotelnikov celebrated 

                                                 
1 Nyquist’s classic 1928 paper considered the maximum signalling rate over a bandlimited channel. He also noted the 
necessary and sufficient conditions on the number of coefficients of a Fourier series representing a bandlimited signal.  
Because of this, and because the Nyquist rate is equal numerically to the minimum sampling rate for a bandlimited 
signal, the contributions of Nyquist and Shannon to the notion of sampling have often become confused. Nyquist did 
not consider explicitly the question of sampling a signal in the time domain. 
2 An earlier English-language version was made by one of the present translators (Katsnelson) as Chapter 2 of 
Benedetto & Ferreira (2001), a highly specialised collection of papers on the state-of-the-art of sampling theory.  The 
current version is a substantial revision as regards style, together with the correction of one or two minor errors. 
3 The Russian Doktor Nauk degree is a higher research degree awarded to distinguished researchers on the basis of a 
thesis, not to be confused with the kandidat degree more akin to a Western PhD or equivalent, which Kotelnikov gained 
in 1933. 



 2

his 95th birthday; greetings from Vladimir Putin, President of the Russian Federation, and 
congratulatory remarks from the IEEE can be found in Lantsberg (2004). He died in February 2005. 
 
Kotelnikov begins his 1933 paper by stating the general problem of spectrum management, and 
raising the issue of whether it is possible, even theoretically, to do better than single-sideband 
modulation. Interestingly, he raises the question of the possibility of “some way of separating 
channels whose frequencies overlap, perhaps even employing a method based not on frequency, as 
has been the case until now, but by some other means” – something routine now using spread-
spectrum techniques. 
 
The next eight pages of the paper derive theoretical results relating to lowpass and bandpass signals 
and their transmission. The most significant are the following two theorems, although Kotelnikov is 
then at pains to work out the detailed context, including a discussion of bandpass rather than 
lowpass sources: 
 

Theorem I 
 
Any function F(t) consisting of frequencies from 0 to f1 cycles per second can be 
represented by the series: 
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where k is an integer, ω1 = 2πf1, and Dk are constants depending on F(t). 
 
Conversely, any function F(t) represented by the series (1) consists only of frequencies 
from 0 to f1. 
 
Theorem II 
 
Any function F(t) consisting of frequencies from 0 to f1 can be transmitted continuously, with 
arbitrary accuracy, by means of numbers sent at intervals of 1/2f1 seconds. 
 
Indeed, measuring the value of F(t) at times t = n/2f1 , where n is an integer, we obtain 
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All the terms of series (1) are zero for this value of t, except for the term with k = n which 
[...] will equal Dnω1. Hence after each interval of 1/2f1 seconds we can determine the next 
Dk. Having transmitted these Dk in turn at intervals of 1/2f1 seconds we can reconstruct F(t) 
to any degree of accuracy according to Equation (1).  

 
At this point it is worth noting Shannon’s remarks, published sixteen years later, about the origin of 
the sampling theorem: “This is a fact which is common knowledge in the communication art. [...] 
but in spite of its evident importance [it] seems not to have appeared explicitly in the literature of 
communication theory” (Shannon, 1949). Indeed, mathematicians had studied the problem from a 
function-theoretic point of view from the mid 19th century or even earlier (Lüke, 1999; Benedetto & 
Ferreira, 2001).  
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Kotelnikov’s theoretical development is followed by four pages of discussion of the engineering 
context. Particularly noteworthy is his consideration of the time-bandwidth trade-off (p. 15 of this 
document), and what we would now call M-ary signalling (pp. 16-17). Interestingly, he does not 
address the issue of noise, except in so far as he discusses power requirements for multi-level 
discrete signalling (implicitly to overcome noise). Indeed, he even states that for discrete signalling 
“the necessary frequency range can be reduced as much as desired”, which is not quite how we 
would put it today. A decade or so later, of course, Kotelnikov took up all these matters in detail, 
with his work on optimal detection. 
 
There is little doubt that Kotelnikov’s 1933 paper was the first to address the problem of sampling a 
continuous, bandlimited signal in an engineering context, even though the mathematical basis of 
sampling had been considered earlier by a number of mathematicians. Russian work in the 1930s 
and 1940s was not known at the time in the West; indeed, only after the Second World War, and in 
the context of the Cold War, did translations of public-domain Russian scientific and engineering 
research become widely available4. Because of this (and also because of the tendency under Stalin 
for spurious claims to be made for Russian priority in science and technology) English-language 
histories of 20th century technology do not always recognise the significance of Russian 
contributions. This translation has attempted to redress the balance for one of the most important 
theoretical results of information engineering. 
 
 

 
 
Kotelnikov in later years 
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Radio Section 
 

On the transmission capacity of the ‘ether’ and of cables in electrical communications 
 

V A Kotelnikov 
 
In both wired and radio engineering, any transmission requires the use of not simply a single 
frequency, but a whole range of frequencies. As a result, only a limited number of radio stations 
(broadcasting different programmes) can operate simultaneously. Neither is it possible to convey 
more than a given number of channels at any one time over a pair of wires, since the frequency 
band of one channel may not overlap that of another: such an overlap would lead to mutual 
interference. 
 
In order to extend the capacity of the ‘airwaves’ or a cable (something that would be of enormous 
practical importance, particularly in connection with rapid developments in radio engineering, 
television transmission, etc), it is necessary either to reduce in some way the range of frequencies 
needed for a given transmission (without adversely affecting its quality), or to devise some way of 
separating channels whose frequencies overlap – perhaps even employing a method based not on 
frequency, as has been the case until now, but by some other means5. 
 
At the present time no technique along these lines permits, even theoretically, the capacity of the 
‘airwaves’ or a cable to be increased any further than that corresponding to ‘single side-band’ 
transmission. So the question arises: is it possible, in general, to do this? Or will all attempts be 
tantamount to efforts to build a perpetual motion machine? 
 
This question is currently very pressing in radio engineering, since each year sees an increase in the 
‘crowding of the airwaves’. It is particularly important to investigate it now in connection with the 
planning of scientific research, since in order to plan, it is important to know what is possible, and 
what is completely impossible, in order to direct efforts in the required manner. 
 
In the present paper this question is investigated, and it is demonstrated that for television, and for 
the transmission of images with a full range of half tones, and also for telephony, there exists a fully 
determined minimum necessary frequency band, which cannot be reduced by any means without 
adversely affecting quality or speed of transmission. It is further demonstrated that for such 
transmissions it is impossible to increase either wireless or wired capacity by any means not based 
on frequency bands – or, indeed, any other method (except, of course, by the use of directional 
antennas for separate channels). The maximum possible capacity for these transmissions can be 
achieved through ‘single sideband transmission’, something fully achievable in principle at the 
present time. 
 
For transmissions such as telegraphy, or for the transmission of images or television pictures 
without half tones, where the source may not change continuously, but is limited to specific, pre-
determined values, it is demonstrated that the required bandwidth can be reduced as much as 

                                                 
5 Indeed, it is sometimes possible to do this by means of directional antennas, but we shall consider here only the 
situation when this is not the case. 
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desired, without adversely affecting the quality or speed of transmission, but at the expense of 
increasing the power and the complexity of the equipment. One such method of bandwidth 
reduction is outlined in the present paper, with a discussion of the necessary power increase. 
 
There is thus no theoretical limit to the capacity of either the ‘airwaves’ or a cable for transmissions 
of this kind; it is simply a matter of technical implementation. 
 
The proof of these propositions in the present paper is independent of the method of transmission on 
the following grounds: in electrical communication any transmitter can transmit, and any receiver 
receive, only some function of time that cannot be completely arbitrary, since the frequencies of 
which it consists, or into which it may be decomposed, must lie within defined limits. In radio 
transmission such a function is converted into current strength in the transmitting antenna, which is 
interpreted more or less exactly by the receiver; in cable transmission it is the electromotive force at 
the transmitting end of the line. In both cases, the function to be transmitted will consist of a limited 
range of frequencies: since firstly very high and very low frequencies will not reach the receiver on 
account of propagation conditions; and secondly, frequencies outside a defined narrow band are 
normally eliminated deliberately, so as not to interfere with other channels. 
 
This need to transmit using functions of time with limited bandwidth leads to a completely 
determined limitation to channel capacity, as will be shown below. 
 
In order to prove the above assertions, let us consider functions of a fixed bandwidth. 
 
Functions consisting of frequencies between 0 and  f1. 
 
Theorem I 
 
Any function F(t) consisting of frequencies between 0 and f1 cycles per second can be represented 
by the series: 
 

 
 
where k is an integer, ω1 = 2πf1, and Dk are constants depending on F(t). 
 
Conversely, any function F(t) represented by the series (1) consists only of frequencies between 0 
and f1. 
 
Proof 
 
Any function F(t) satisfying the Dirichlet conditions6 (finite number of maxima, minima and 
discontinuities in a given finite interval), and integrable from -` to +`, which is always the case in 
electrical engineering, can be represented by the Fourier integral7: 
 

                                                 
6 In this paper we shall consider only functions satisfying the Dirichlet conditions 
7 See, for example, Smirnov, Course of Higher Mathematics, Vol. II, 1931, p. 427 
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that is, as an infinite sum of sinusoidal oscillations with frequencies from 0 to ` and amplitudes 
C(ω) dω and S(ω) dω dependent on frequency.  
 
Moreover 
 

 
In our case, where F(t) consists only of frequencies between 0 and  f1 it is clear that C(ω) and S(ω) 
= 0 for ω  > ω 1 = 2πf1, and for this reason F(t) can be represented according to Equation 2 as: 
 

 
Now, the functions C(ω) and S(ω), like any other, can always be represented by Fourier series over 
the interval 0 < ω < ω 1. Moreover, if we so desire, these series will consist only of sine or only of 
cosine terms if we take double the interval – that is, 2 ω 1 – as the period8. Then 
 

 

              (5b) 
 
Introducing the following notation 
 

 
we can rewrite 5a and 5b as: 
 

                                                 
8 See Smirnov, Course of Higher Mathematics, Vol. II, 1931, p. 385 
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Substituting expressions (7) into equation (4) leads, after some manipulation (see Appendix I), to 
equation (1), thus proving the first part of Theorem 1. 
 
In order to prove the second part of the theorem, consider the special case of a function F(t) with a 
frequency spectrum contained within the interval between 0 and  f1, and with all but one of the 
coefficients of Dk equal to zero. Such a function clearly consists of only one term of series (1). 
Conversely, if F(t) consists of any one term of  series (1), its frequency spectrum is confined to the 
range 0 to f1. Hence any sum of arbitrary terms of the series, and thus the sum of all the terms, will 
always consist of frequencies between 0 and  f1. 
 
All the terms of series (1) are of  similar form, differing only in magnitude and displacement in 
time. The kth term is shown in Figure 1; it has a maximum at time t = k/2f1 and gradually reduces in 
magnitude on either side. 
 

 
 
Theorem II 
 
Any function F(t) consisting of frequencies between 0 and  f1 can be transmitted continuously, with 
arbitrary accuracy, by means of numbers sent at intervals of 1/2f1 seconds. Indeed, measuring the 
value of F(t) at times t = n/2f1 , where n is an integer, we obtain 
 

 
 

All the terms of series (1) are zero for this value of t, except for the term with k = n which, as may 
easily be obtained by expansion, will equal Dnω1. Hence after each interval of 1/2f1 seconds we can 
determine the next Dk. Having transmitted these Dk in turn at intervals of 1/2f1 seconds we can, 
according to equation (1), reconstruct F(t) to any degree of accuracy. 
 
Theorem III 
 
It is possible to transmit, continuously and uniformly, arbitrary values Dk at a rate of N per second 
using a function F(t) with vanishingly small frequency components greater than f1 = N/2. 
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So, on obtaining each given value, we construct a function Fk(t) such that: 
 

 
 
and transmit their sum F(t). If T = `, then the function F(t) consists exclusively of frequencies less 
than f1, corresponding to series (1). Unfortunately, however, it is not possible to construct such an 
infinite sequence of terms, so we must restrict ourselves to finite T. Let us now prove, therefore, 
that the greater the value of T, the smaller the amplitudes of those components f > f1, and that such 
amplitudes can be made arbitrarily small. To do this, we find the amplitudes C(ω) and S(ω) for the 
function (9), by substituting it into equation (3). We obtain 
 

  (10) 
 
and after integrating (see Appendix II) we obtain: 
 

 
 
In this expression Si denotes the sine integral – that is, the function: 
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The value of this function can be calculated and has been tabulated9; it is plotted in Figure 2. 
 

 
 
As can be seen from the figure, Si x tends to k [sic] ± π/2 as x tends to ± `. 
 
Let us consider the value of the expression in square brackets in Equation 11. Figure 3a shows the 
plot of this for T = 3/2f1; Figure 3b for T = 6/2f1; Figure 3c for T = 24/2f1; and Figure 3d for T = `. 
 

 
 

                                                 
9 See, for example, E. Jah[n]ke and F. Emde, Funktiontafeln mit Formeln und Kurven. 



 11

As can be seen from these figures, the value in square brackets in Equation 11 tends to that shown 
in Figure 3d as T increases. That is, for ω > ω1, [ ] = 0; for ω < ω1, [ ] = π. This is also evident 
directly from Equation 11, since increasing T corresponds to ‘scaling’ ω, and [the oscillations] of Si 
die rapidly away. 
 
Hence the resulting sum of Fk(t) will have arbitrary small amplitudes for frequencies f > f1, 
providing T is sufficiently large. It is easy to recover the transmitted numbers Dk from the received 
function F(t), since at time t = n/2f1 all the terms are zero with the exception of that for which k = n, 
which is equal to Dnω. Hence 
 
F(n/2f1) = Dnω 
 
In this manner, by measuring the value of our function at times t = k/2f1 we are able to obtain the 
value of a new Dk after each 1/2f1 second. In other words, we receive N = 2f1 numbers per second, 
and the theorem is proved. 
 
 
Functions consisting of frequencies from f1 to f2. 
 
Let us now prove the following: 
 
Theorem IV 
 
Any function F(t) consisting of frequencies from f1 to f2 can be represented as: 
 

 
 
where ω1 = 2πf1, ω2 = 2πf2, and F1(t) and F2(t) are some functions consisting of frequencies between 
0 and  f = (f2 – f1)/2. Conversely, if in Equation 13 F1(t) and F2(t) are some functions consisting of 
frequencies between 0 and  f = (f2 – f1)/2, then F(t) consists of frequencies from f1 to f2. 
 
If  F(t) consists only of frequencies from f1 to f2, then evidently C(ω) and S(ω) for such a function 
may be represented as: 
 
C(ω) = S(ω) = 0 for ω > ω2  or ω < ω1, 
 

 
or, reintroducing the convention 
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we obtain 
 

 
for ω1 < ω < ω2  and C(ω) = S(ω) = 0 for ω > ω2  or ω < ω1. 
 
Substituting (14) into (2) we obtain, after integration and some manipulation (see Appendix III): 
 

 
 
That is, 
 

 
Recalling that, according to Theorem I, F1(t) and F2(t) must possess a frequency spectrum between 
0 and  f = (f2 – f1)/2, since the series (16) and (17) differ from series (1) only in notation, we can 
consider the first part of Theorem IV as proved. 
 
Since, according to Theorem I, it is possible to represent any functions F1(t) and F2(t) consisting of 
frquencies between 0 and  f = (f2 – f1)/2 by means of series (16) and (17), and since no conditions 
are imposed on the coefficients Dk appearing in these series, then it is clear that the second part of 
Theorem IV is also true. 
 
Let us now prove two theorems which are generalizations of Theorems I and II. 
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Theorem V 
 
Any function F(t) consisting of frequencies from f1 to f2 can be transmitted continuously with any 
accuracy by means of numbers sent at intervals of 1/[2(f2-f1)] seconds. 
 
At time t = k/(f1 + f2) (where k is an integer) we obtain, according to Equation 13 
 

 
 
since at this value of t the cosine term equals 1 and the sine term 0. When  
 

 
 
we obtain 
 

 
 
for analogous reasons. 
 
Hence, after each 1/(f2 + f1) seconds we shall be in a position to determine the individual values of 
F1(t) and F2(t). From these values we can recover the functions F1(t) and F2(t) themselves, since 
according to Theorem II this rate allows us to recover functions consisting of frequencies between 0 
and  (f2 + f1)/2, whereas F1(t) and F2(t) consist only of frequencies between 0 and  (f2 – f1)/2. 
 
According to Theorem II,  each of the functions obtained in this way, with frequencies between 0 
and  (f2 – f1)/2, can be transmitted by numbers sent at intervals of 1/(f2-f1) seconds. The two 
functions can thus be transmitted simultaneously by means of numbers sent at intervals of 1/2(f2-f1) 
seconds; from these numbers, once F1(t) and F2(t) have been recovered we can recover F(t) itself 
according to Equation 13. 
 
Theorem VI 
 
It is possible to transmit arbitrary numbers Dk continuously and uniformly at a rate of N numbers 
per second by means of a function F(t) with arbitrarily small frequency components f > f2 and f < f1 
(that is, in practice they can be neglected) providing that 
 

 
  
According to Theorem III we can transmit N numbers per second by means of two functions F1(t) 
and F2(t), each having arbitrarily small components with frequencies greater than (f2 – f1)/2.  
 
These functions may also be transmitted uniformly by means of the function F(t), having arbitrarily 
small components for f > f2 and f < f1. Indeed, according to Equation 13 we obtain F(t) from F1(t) 
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and F2(t). By transmitting F(t) we can, as shown above, recover F1(t) and F2(t) and thereby the 
transmitted numbers. 
 
In order to prove the final theorem, which states that it is impossible to transmit an indefinite 
amount by means of a function with a restricted bandwidth, let us prove the following lemma: 
 
Lemma 
 
It is impossible to transmit N arbitrary numbers by means of M numbers if 
 

M < N                                                                                (20) 
 
Assume that it can be done. Then, clearly, the M numbers m1 ... mM are some functions of the N 
numbers n1 ... nN. That is 
 

 
and we have to recover the numbers n1 ... nN from a knowledge only of the M numbers m1 ... mM 
and, of course, the functions φ1 ...  φM. But this is equivalent to solving M equations with N 
unknowns, which is impossible if the number of equations is less than the number of unknowns – 
that is, if the inequality (20) holds. 
 
Theorem VII 
 
It is possible continuously to transmit arbitrary numbers, in a uniform sequence, at a rate of N per 
second, and M arbitrary functions F1(t) ... FM(t) with bandwidths ∆f1 ... ∆fM, by means of a 
continuous sequence of numbers at a rate N′ per second and M′ functions F′1(t) ... F′M(t) with 
bandwidths ∆f′1 ... ∆f′M, if 
 

 
It is impossible to do this in any way if 
 

 
The first part of this theorem can be proved on the basis of theorems V and VI. According to 
Theorem V we can transmit our N numbers per second and M curves by means of P numbers per 
second if 
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These P numbers per second can be transmitted partly by means of N′ numbers per second and 
partly, by Theorem VI, using the curves F′1(t) ... F′M(t) providing the equality (22) holds. 
 
The second part of the theorem we prove by reductio ad absurdum from a lemma. Suppose we need 
to transmit P arbitrary numbers per second. From Theorem VI this is possible by transmitting N 
numbers per second and the functions F1(t) ... FM(t) with bandwidths ∆f1 ... ∆fM providing the 
equality (24) holds. But these numbers and functions, if the second part of the theorem is incorrect, 
could have been transmitted by means of the functions F′1(t) ... F′M(t) and N′ numbers per second. 
The latter numbers and functions, according to Theorem V, can be transmitted by P′ numbers per 
second if 
 

 
In other words, we could transmit continuously P numbers per second using P′ numbers per second 
even though, from equalities (24) and (25) and inequality (23),  P > P′. 
 
Hence the assumption that the second part of the theorem is false leads to an inadmissible, 
contradictory result. 
 
Channel capacity for telephone transmission 
 
Speech, music, and other objects of telephone transmission are arbitrary functions of time, having a 
frequency spectrum whose width is completely defined and which depends on how well we wish to 
represent the [original] sound.  
 
When transmitting this function by wire or radio, we convert it into another function of time, and it 
is the latter, strictly speaking, that we transmit. Moreover, for continuous transmission, this latter 
function may not, according to Theorem VII, have a spectrum of frequencies narrower than that of 
the audible frequencies that we wish to transmit. Thus, a continuous telephone transmission may not 
occupy a frequency band in the ether or on a wire narrower than the width of the spectrum of the 
audible frequencies required for the given transmission. This is true independently of the method of 
transmission, and it is impossible to invent any method that would allow a narrower bandwidth to 
be used for continuous transmission. Such a minimum spectral width can be achieved at present by 
means of single sideband transmission, as is well known. 
 
The proviso “for continuous transmission” is of great importance, since by means of transmission 
with interruptions any sounds - music say – can occupy less bandwidth than that of the original 
audible spectrum. To do this, it is sufficient first to record the music to be transmitted on 
gramophone records, and then to transmit from them but playing back at half the speed, say, of the 
recording. Then every frequency will take on half its normal value, and the transmission will 
require half the bandwidth. The original can similarly be recovered by gramophone. It is clear that 
such transmission cannot increase channel capacity, since the “ether” or the cable will be occupied 
the whole time, while communication will proceed with interruptions. 
 
This does not contradict Theorem VII, since the latter states “it is impossible continuously to 
transmit an arbitrary function”, and by using this kind of transmission we can transmit either an 
arbitrary function (with interruptions), or a not entirely arbitrary function having known breaks 
(continuously). 
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From Theorem VII it also follows that it is impossible to increase channel capacity by using any 
selection of a non-frequency character (apart from directional antennas). If it were possible to do 
this, such a method would mean that, for example, it would be possible to transmit simultaneously 
from one place to another n telephone channels each requiring bandwidth ∆f, using a total 
frequency band of less than n ∆f. But in this case the field (or, in a wire, current) intensities from 
different channels would be mixed into a single function of time with a bandwidth less than n ∆f 
which would appear at the receivers. We should have transmitted n functions of time with 
bandwidth ∆f with the aid of a single function of bandwidth less than n ∆f, which according to 
Theorem VII is completely impossible. 
 
From what has been said, it is clear that for telephony the only way to increase the capacity of the 
“airwaves” is to use directional antennas or to extend the exploitation of the frequency spectrum to 
the ultra-short wave region. 
 
Transmission of images and television with a full range of half tones 
 
For the transmission of images and television we need to transmit the level of blackness of some N 
elements per second, which is equivalent to transmitting arbitrary numbers at the speed of N per 
second. If we wish to do this using a function of time, as is always the case in practice, then 
according to Theorem VII a frequency band of not less than N/2 cps is required. Thus it is obvious 
immediately that here, too, it is impossible to reduce the bandwidth to less than that required for 
single sideband transmission. Indeed, the implementation even of this may encounter great technical 
difficulties owing to possible phase distortion during transmission. 
 
Neither is it possible to reduce the bandwidth by means of any “group scanning” of the image – that 
is, not scanning the elements individually – since with such scanning one still has to transmit, even 
if by another method, the blackness level of the same N elements per second, and hence N arbitrary 
numbers per second, which cannot be achieved in any way in a reduced frequency band. Selection 
methods not based on frequency cannot help here (not including directional antennas) for exactly 
the same reason as in telephone transmission. 
 
Telegraph transmission and the transmission of images without half tones or with a limited 
number of them 
 
In telegraph transmission, and also in the transmission of images without half tones or with a 
limited number of half tones specified in advance, we again have to deal with the transmission of 
some N elements per second, equivalent to the transmission of N numbers per second. In this case, 
however, the magnitudes of these elements, and thus the numbers, are not completely arbitrary, but 
must take on completely determined values known in advance. It is therefore not possible to apply 
the theorems derived above directly, because these are concerned with the transmission of arbitrary 
numbers completely unknown in advance. 
 
 In fact, for such transmission the necessary frequency range can be reduced as much as desired and 
hence, at least in theory, the channel capacity can be increased indefinitely. We can proceed in the 
following manner. Suppose we wish to transmit, at a rate of N per second, elements that can take on 
the values 0 and 1 only, and to use a bandwidth of only N/4 rather than the N/2 of Theorem VII. In 
order to do this we shall transmit two such elements by means of a single element or number, as 
given in the following table. Here column I holds the value of the first element, column II the 
second, and column III the value of the element by means of which we wish to transmit the other 
two. 
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I   II III 
0 0 0 
1 0 1 
1 1 2 
0 1 3 

 
 
In this way we can transmit N elements per second, each of which can take on one of two values, by 
means of N/2 elements per second, each of which can take on four values; the latter, according to 
Theorem VII, can be transmitted using a bandwidth N/4. 
 

 
 
In practice such a replacement of two elements by one can be realised as illustrated in Figure 4, 
where φ1 and φ2 are two photoelectric cells or telegraph transmitters: φ1 activates modulator M1 
which sends to the line an amplitude of value 1; φ2 drives modulator M2 with an amplitude 3. When 
acting together φ1 and φ2, which are connected in an opposing sense, result in an amplitude of 2 
being sent. The received signal is fed to three receivers: the first begins to operate at amplitude 1, 
the second at amplitude 2 and the third at amplitude 3. The first receiver drives output L1, the 
second L2, while the third disconnects receiver 1 from output L1 on receiving amplitude 3. With the 
aid of such a scheme we achieve the reduction in bandwidth discussed above. 
 
In such transmission, in view of the fact that it is necessary to distinguish between four instead of 
two levels in the received signal, it is obvious that the power of the transmitter has to be increased 
by a factor of 32 = 9 in comparison with the usual transmission. 
 
In an analogue fashion it is possible to reduce the frequency band by a factor of n, transmitting n 
elements, each of which can take on one of two values, by a single element taking on one of 2n 
values (the number of combinations of n elements, each taking on one of two values). But for this it 
is necessary to increase the power by a factor of (2n -1)2. 
 
For the transmission of images with a predefined number of half tones each element will take on 
several values, m say (in this case m > 2). In order to decrease the bandwidth by n times in such a 
transmission it is possible to replace n transmitted elements by one with mn possible values (the 
number of possible combinations of n elements each having m possible values). Then the power 
must clearly be increased by a factor 
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As an be seen, reducing the bandwidth in this way requires an enormous increase in power. 
Furthermore, such methods are very bad for shortwave transmission owing to fading. For wired 
communication, however, such bandwidth reduction may be of current practical importance since 
the powers are necessarily small and received strengths do not vary rapidly. 
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Appendix I 
 
Substituting expressions (7) into Equation 4 we obtain 
 

 
or, integrating and substituting 2πf1 for ω1 in the brackets: 
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Appendix II 
 
In the expression: 
 

 
let us substitute 
 

 
Then 
 

 
 
The term under the second integral has the same magnitude but opposite sign for positive and 
negative u and for this reason the second integral is zero. The value of the term under the first 
integral does not change if u is replaced by –u so the integral can be taken from 0 to T and 
multiplied by 2. Hence 
 

 
or 
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Substituting in the first integral 
 

 
and in the second 
 

 
we have 
 

 
 
The integrals in brackets cannot be evaluated analytically. Clearly, they are some functions of the 
upper limits. They are denoted integral sine functions, and introducing this notation we have 
 

 
Proceeding similarly with S(ω) we obtain Equation 11. 
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Appendix III 
 
Substituting Equation 14 into Equation 2 we have 
 

 
The limits are from ω1 to ω2 because C(ω) = S(ω) = 0 for ω < ω1 or ω > ω2. After trigonometrical 
manipulation we have: 
 

 
 
Replacing the difference of the sines by a product, and simplifying, we have 
 

 
or, grouping even and odd k together, we obtain Equation 15. 
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Conclusions 
 
1. In the light of the ‘crowding of the airwaves’ that is already occurring, and in connection with the 
further rapid development of radio engineering, particularly the development of shortwave 
telephony and image transmission, the question of methods for increasing the channel capacity of 
the ‘ether’ must be addressed with great urgency by scientific research institutes. The question of 
increasing the channel capacity of wire communications is also of great economic importance, and 
should also be studied. 
 
2. Since it is impossible to increase the capacity of either the airwaves or cables for telephone or 
image transmission beyond that required for single sideband transmission (for example, by 
overlaying the frequency bands of separate channels and then separating them), all attempts of this 
nature should be abandoned as unrealizable. 
 
3. For telegraphy and the transmission of images without half tones or with a limited number of 
them, channel capacity may, in theory, be increased indefinitely, although only at the expense of 
greatly increased power and equipment complexity. Because of this it appears that such methods of 
bandwidth reduction will find application in the immediate future only in wire communications; 
effort should be devoted to this area. 
 
4. For telephony and image transmission with a full range of half tones every effort should be 
directed towards the development of methods for single-sideband transmission and reception, since 
these allow the most efficient use of ‘ether’ and cable. The aim of research and development should 
be the improvement and simplification of equipment, which is currently very complex. 
 
5. It is necessary to study the question of increasing the channel capacity of the ‘ether’ by means of 
directional antennae for both transmission and reception. 
 
6. It is necessary to increase the range of  frequencies exploited in the ultra shortwave region, as 
well as to research this frequency band. 
 
7. It is necessary to study the question of improving the stability of radio station frequencies, since 
this allows more effective use of the ‘ether’. 
 
 
 
 
 


